
 www.accessdemo.info

Page 1 of 34

The Reddick VBA (RVBA) Naming Conventions

Copyright © 1992-1999 by Greg Reddick

The purpose of the Reddick VBA (RVBA) Naming Conventions is to provide a guideline for naming
objects in the Visual Basic for Applications (VBA) language. Having conventions is valuable in any

programming project. When you use them, the name of the object conveys information about the meaning

of the object. These conventions attempt to provide a way of standardizing that meaning across the body of
VBA programmers.

VBA is implemented to interact with a host application-for example, Microsoft Access, Microsoft Visual
Basic, AutoCAD, and Visio. The RVBA conventions cover all implementations of the VBA language,

regardless of the host application. Some of the tags described in this document may not necessarily have an
implementation within some of the particular host programs for VBA. The word object, in the context of
this document, refers to simple variables and VBA objects, as well as to objects made available by the

VBA host program.

While I am the editor of these conventions, they are the work of many people, including Charles Simonyi,
who invented the Hungarian conventions on which these are based, and Stan Leszynski, who co-authored
several versions of the conventions. Many others, too numerous to mention, have also contributed to the

development and distribution of these conventions, but I’d especially like to thank Paul Litwin and Ken

Getz who have made substantial contributions over the years.

These conventions are intended as a guideline. If you disagree with a particular part of the conventions,
simply replace that part with what you think works better. However, keep in mind that future generations of

programmers may need to understand those changes, and place a comment in the header of a module

indicating what changes have been made. To be concise, the conventions are presented without
rationalizations for how they were derived although each of the ideas presented has a considerable history

to it.

Changes to the Conventions

Some of the tags in the version of the conventions presented here have changed from previous versions.

Consider all previous tags to be grandfathered into the conventions--you don’t need to go back and make
changes. For new development work, I leave it up to you to decide whether to use the older tags or the ones
suggested here. In a few places in this document, older tags are shown in {braces}. As updates to this

document are made, the current version can be found at the Xoc Software web site, http://www.xoc.net.

An Introduction to Hungarian

The RVBA conventions are based on the Hungarian conventions for constructing object names, named for

the native country of the inventor, Charles Simonyi. The objective of Hungarian is to convey information

about the object concisely and efficiently. Hungarian takes some getting used to, but once adopted, it

quickly becomes second nature. The format of a Hungarian object name is

[prefixes]tag[BaseName[Suffixes]]

The square brackets indicate optional parts of the object name. These components have the following

meanings:

Component

Prefixes

 www.accessdemo.info

Page 2 of 34

Meaning

Modify the tag to indicate additional information. Prefixes are all
lowercase. They are usually picked from a standardized list of prefixes,

given later in this document.

 www.accessdemo.info

Page 3 of 34

Tag

BaseName

Suffixes

Short set of characters, usually mnemonic, that indicates the type of the

object. The tag is all lowercase. It is usually selected from a

standardized list of tags, given later in this document.

One or more words that indicate what the object represents. Capitalize
the first letter of each word in the BaseName.

Additional information about the meaning of the BaseName. Capitalize
the first letter of each word in the Suffix. They are usually picked from

a standardized list of suffixes, given later in this document.

Notice that the only required part of the object name is the tag. This may seem counterintuitive; you may
feel that the BaseName is the most important part of the object name. However, consider a generic
procedure that operates on any form. The fact that the routine operates on a form is the important thing, not

what that form represents. Because the routine may operate on forms of many different types, you do not

necessarily need a BaseName. However, if you have more than one object of a type referenced in the

routine, you must have a BaseName on all but one of the object names to differentiate them. In addition,
unless the routine is generic, the BaseName conveys information about the variable. In most cases, a

variable should include a BaseName.

Tags

Use the techniques described in the following sections to construct tags to indicate the data type of an

object.

Variable tags

Use the tags listed in Table 1 for VBA data types. You can also use a specific tag instead of obj for any

data type defined by the host application or one of its objects. (See the section “Host Application and

Component Extensions to the Conventions” later in this document.)

Table 1: Tables for VBA Variables

Tag

bool {f, bln}

byte {byt}

cur

date {dtm}

dec

dbl

int

lng

obj

sng

 www.accessdemo.info

Page 4 of 34

Object Type

Boolean

Byte

Currency

Date

Decimal

Double

Integer

Long

Object

Single

 www.accessdemo.info

Page 5 of 34

str

stf

var

Here are several examples:

lngCount

intValue

strInput

String

String (fixed length)

Variant

You should explicitly declare all variables, each on a line by itself. Do not use the old-type declaration

characters, such as %, &, and $. They are extraneous if you use the naming conventions, and there is no
character for some of the data types, such as Boolean. You should always explicitly declare all variables of

type Variant using the As Variant clause, even though it is the default in VBA. For example:

Dim intTotal As Integer

Dim varField As Variant

Dim strName As String

Constructing Properties Names

Properties of a class present a particular problem: should they include the naming convention to indicate

the type? To be consistent with the rest of these naming conventions, they should. However, it is permitted

to have property names without the tags, especially if the class is to be made available to customers who
may not be familiar with these naming conventions.

Collection Tags

You treat a collection object with a special tag. You construct the tag using the data type of the collection

followed by the letter s. For example, if you had a collection of Longs, the tag is lngs. If it was a collection
of forms, the tag for the collection is frms. Although, in theory, a collection can hold objects of different

data types, in practice, each of the data types in the collection is the same. If you do want to use different

data types in a collection, use the objs tag. For example:

intsEntries

frmsCustomerData

objsMisc

Constants

Constants always have a data type in VBA. Because VBA will choose this data type for you if you don’t

specify it, you should always specify the data type for a constant. Constants declared in the General
Declarations section of a module should always have a scope keyword of Private or Public, and be prefixed
by the scope prefixes m or g, respectively. A constant is indicated by appending the letter c to the end of the

data type for the constant. For example:

Const intcGray As Integer = 3

Private Const mdblcPi As Double = 3.14159265358979

Although this technique is the recommended method of naming constants, if you are more concerned about

specifying that you are dealing with constants rather than their data type, you can alternatively use the
generic tag con instead. For example:

Const conPi As Double = 3.14159265358979

 www.accessdemo.info

Page 6 of 34

Menu Items

The names of menu items should reflect their position in the menu hierarchy. All menu items should use

the tag mnu, but the BaseName should indicate where in the hierarchy the menu item falls. Use Sep in the
BaseName to indicate a menu separator bar, followed by an ordinal. For example:

mnuFile (on menu bar)

mnuFileNew (on File popup menu)

mnuFileNewForm (on File New flyout menu)

mnuFileNewReport (on File New flyout menu)

mnuFileSep1 (first separator bar on file popup menu)

mnuFileSaveAs (on File popup menu)

mnuFileSep2 (second separator bar on file popup menu)

mnuFileExit (on File popup menu)

mnuEdit (on menu bar)

Creating Data Types

VBA gives you three ways to create new data types: enumerated types, classes, and user-defined types. In

each case, you will need to invent a new tag that represents the data type that you create.

Enumerated types

Groups of constants of the long data type should be made an enumerated type. Invent a tag for the type,

append a “c,” and then define the enumerated constants using that tag. Because the name used in the Enum

line is seen in the object browser, you can add a BaseName to the tag to spell out the abbreviation indicated

by the tag. For example:

Public Enum ervcErrorValue

 ervcInvalidType = 205

 ervcValueOutOfBounds

End Enum

The BaseName should be singular, so that the enumerated type should be ervcErrorValue, not

ervcErrorValues. The tag that you invent for enumerated types can then be used for variables that can

contain values of that type. For example:

Dim erv As ervcErrorValue

Private Sub Example(ByVal ervCur As ervcErrorValue)

While VBA only provides enumerated types of groups of the long type, you can still create groups of

constants of other types. Just create a set of constant definitions using an invented tag. For example:

Public Const estcError205 As String = "Invalid type"

Public Const estcError206 As String = "Value out of bounds"

Unfortunately, because this technique doesn’t actually create a new type, you don’t get the benefit of the

VBA compiler performing type checking for you. You create variables that will hold constants using a

similar syntax to variables meant to hold instances of enumerated types. For example:

Dim estError As String

Tags for classes and user-defined types

A class defines a user-defined object. Because these invent a new data type, you will need to invent a new

tag for the object. You can add a BaseName to the tag to spell out the abbreviation indicated by the tag.

User-defined types are considered a simple class with only properties, but in all other ways are used the

same as class modules. For example:

 www.accessdemo.info

Page 7 of 34

gphGlyph

edtEdit

Public Type grbGrabber

 www.accessdemo.info

Page 8 of 34

You then define variables to refer to instances of the class using the same tag: For example:

Dim gphNext As New gphGlyph

Dim edtCurrent as edtEdit

Dim grbHandle as grbGrabber

Polymorphism

In VBA, you use the Implements statement to derive classes from a base class. The tag for the derived class

should use the same tag as the base class. The derived classes, though, should use a different BaseName

from the base class. For example:

anmAnimal (base class)

anmZebra (derived class of anmAnimal)

anmElephant (derived class of anmAnimal)

This logic of naming derived classes is used with forms, which are all derived from the pre-defined Form

base class and use the frm tag. If a variable is defined to be of the type of the base class, then use the tag, as
usual. For example:

Dim anmArbitrary As anmAnimal

Dim frmNew As Form

On the other hand, if you define a variable as an instance of a derived class, include the complete derived

class name in the variable name. For example:

Dim anmZebraInstance As anmZebra

Dim anmElephantExample As anmElephant

Dim frmCustomerData As frmCustomer

Constructing Procedures

VBA procedures require you to name various items: procedure names, parameters, and labels. These

objects are described in the following sections.

Constructing Procedure Names

VBA names event procedures, and you cannot change them. You should use the capitalization defined by

the system. For user-defined procedure names, capitalize the first letter of each word in the name. For
example:

cmdOK_Click

GetTitleBarString

PerformInitialization

Procedures should always have a scope keyword, Public or Private, when they are declared. For example:

Public Function GetTitleBarString() As String

Private Sub PerformInitialization

Naming Parameters

You should prefix all parameters in a procedure definition with ByVal or ByRef, even though ByRef is

optional and redundant. Procedure parameters are named the same as simple variables of the same type,
except that arguments passed by reference use the prefix “r.” For example:

Public Sub TestValue(ByVal intInput As Integer, ByRef rlngOutput As Long)

Private Function GetReturnValue(ByVal strKey As String, _

 ByRef rgph As Glyph) As Boolean

 www.accessdemo.info

Page 9 of 34

Naming Labels

Labels are named using upper and lower case, capitalizing the first letter of each word. For example:

ErrorHandler:

ExitProcedure:

Prefixes

Prefixes modify an object tag to indicate more information about an object.

Arrays of Objects Prefix

Arrays of an object type use the prefix “a.” For example:

aintFontSizes

astrNames

Index Prefix

You indicate an index into an array by the prefix i, and for consistency the data type should always be a

long. You may also use the index prefix to index into other enumerated objects, such as a collection of
user-defined classes. For example:

iaintFontSizes

iastrNames

igphsGlyphCollection

Prefixes for Scope and Lifetime

Three levels of scope exist for each variable in VBA: Public, Private, and Local. A variable also has a

lifetime of the current procedure or the lifetime of the object in which it is defined. Use the prefixes in

Table 2 to indicate scope and lifetime.

Table 2: Scope prefixes

Prefix

(none)

s

m

g

Object Type

Local variable, procedure-level lifetime, declared with “Dim”

Local variable, object lifetime, declared with “Static”

Private (module) variable, object lifetime, declared with “Private”

Public (global) variable, object lifetime, declared with “Public”

You also use the “m” and “g” constants with other objects, such as constants, to indicate their scope. For
example:

intLocalVariable

mintPrivateVariable

gintPublicVariable

mdblcPi

VBA allows several type declaration words for backward compatibility. The older keyword “Global”

should always be replaced by “Public,” and the “Dim” keyword in the General Declarations section should

 www.accessdemo.info

Page 10 of 34

be replaced by “Private.”

 www.accessdemo.info

Page 11 of 34

Other Prefixes

Table 3 lists and describes some other prefixes:

Table 3: Other commonly-used prefixes

Prefix

c

h

r

Here are some examples:

castrArray

hWndForm

Suffixes

Object Type

Count of some object type

Handle to a Windows object

Parameter passed by reference

Suffixes modify the base name of an object, indicating additional information about a variable. You’ll

likely create your own suffixes that are specific to your development work. Table 4 lists some generic VBA
suffixes.

Table 4: Commonly-used suffixes

Suffix

Min

First

Last

Lim

Max

Cnt

Here are some examples:

iastrNamesMin

iastrNamesMax

iaintFontSizesFirst

Object Type

The absolute first element in an array or other kind of list

The first element to be used in an array or list during the current operation

The last element to be used in an array or list during the current operation

The upper limit of elements to be used in an array or list. Lim is not a valid
index. Generally, Lim equals Last + 1

The absolutely last element in an array or other kind of list

Used with database elements to indicate that the item is a Counter. Counter
fields are incremented by the system and are numbers of either type Long or
type Replication Id.

igphsGlyphCollectionLast

lngCustomerIdCnt

varOrderIdCnt

File Names

 www.accessdemo.info

Page 12 of 34

When naming items stored on the disk, no tag is needed because the extension already gives the object

type. For example:

Test.Frm (frmTest form)

 www.accessdemo.info

Page 13 of 34

Globals.Bas (globals module)

Glyph.Cls (gphGlyph class module)

Host Application and Component Extensions to the

Conventions

Each host application for VBA, as well as each component that can be installed, has a set of objects it can

use. This section defines tags for the objects in the various host applications and components.

Access 2000, Version 9.0 Objects

Table 5 lists Access object variable tags. Besides being used in code to refer to these object types, these

same tags are used to name these kinds of objects in the form and report designers.

Table 5: Access object variable tags

Tag

aob

aops

aop

app

bfr

chk

cbo

cmd

ctl

ctls

ocx

dap

dcm

frm

fcd

fcds

frms

grl

hyp

img

 www.accessdemo.info

Page 14 of 34

Object Type

AccessObject

AccessObjectProperties

AccessObjectProperty

Application

BoundObjectFrame

CheckBox

ComboBox

CommandButton

Control

Controls

CustomControl

DataAccessPage

DoCmd

Form

FormatCondition

FormatConditions

Forms

GroupLevel

Hyperlink

Image

 www.accessdemo.info

Page 15 of 34

Some examples:

txtName

lblInput

lbl

lin

lst

bas

ole

opt

fra

brk

pal

prps

shp

ref

refs

rpt

rpts

scr

sec

sfr

srp

tab

txt

tgl

Label

Line

ListBox

Module

ObjectFrame

OptionButton

OptionGroup (frame)

PageBreak

PaletteButton

Properties

Rectangle

Reference

References

Report

Reports

Screen

Section

SubForm

SubReport

TabControl

TextBox

ToggleButton

For ActiveX custom controls, you can use the tag ocx as specified in Table 5 or more specific object tags

that are listed later in this document in Tables 14 and 15. For an ActiveX control that doesn't appear in the

Tables 14 or 15, you can either use ocx or invent a new tag.

DAO 3.6 Objects

DAO is the programmatic interface to the Jet database engine shared by Access, Visual Basic, and Visual

 www.accessdemo.info

Page 16 of 34

C++. The tags for DAO 3.6 objects are shown in Table 6.

 www.accessdemo.info

Page 17 of 34

Table 6: DAO object tags

Tag

cnt

cnts

db

dbs

dbe

doc

docs

err

errs

fld

flds

grp

grps

idx

idxs

prm

prms

pdbe

prp

prps

qry

qrys

rst

rsts

rel

rels

tbl

tbls

 www.accessdemo.info

Page 18 of 34

Object Type

Container

Containers

Database

Databases

DBEngine

Document

Documents

Error

Errors

Field

Fields

Group

Groups

Index

Indexes

Parameter

Parameters

PrivDBEngine

Property

Properties

QueryDef

QueryDefs

Recordset

Recordsets

Relation

Relations

TableDef

TableDefs

 www.accessdemo.info

Page 19 of 34

usr

usrs

wrk

wrks

Here are some examples:

rstCustomers

idxPrimaryKey

User

Users

Workspace

Workspaces

Table 7 lists the tags used to identify types of objects in a database.

Table 7: Access Database Explorer object tags

Tag

tbl

qry

frm

rpt

mcr

bas

dap

Object Type

Table

Query

Form

Report

Macro

Module

DataAccessPage

If you wish, you can use tags that are more exact or suffixes to identify the purpose and type of a database
object. If you use the suffix, use the tag given from Table 7 to indicate the type. Use either the tag or the

suffix found along with the more general tag, but not both. The tags and suffixes are shown in Table 8.

Table 8: Specific object tags and suffixes for Access Database Explorer objects

Tag

tlkp

qsel

qapp

qxtb

qddl

qdel

qflt

qlkp

q
m

a
k

Suffix

Lookup

(none)

Append

XTab

DDL

Delete

Filter

Lookup

 www.accessdemo.info

Page 20 of 34

MakeTable Object Type

Table (lookup)

Query (select)

Query (append)

Query (crosstab)

Query (DDL)

Query (delete)

Query (filter)

Query (lookup)

Query (make
table)

 www.accessdemo.info

Page 21 of 34

qspt

qtot

quni

qupd

fdlg

fmnu

fmsg

fsfr

rsrp

mmnu

Here are some examples:

tblValidNamesLookup

tlkpValidNames

fmsgError

mmnuFileMnu

PassThru

Totals

Union

Update

Dlg

Mnu

Msg

SubForm

SubReport

Mnu

Query (SQL pass-through)

Query (totals)

Query (union)

Query (update)

Form (dialog)

Form (menu)

Form (message)

Form (subform)

Form (subreport)

Macro (menu)

When naming objects in a database, do not use spaces. Instead, capitalize the first letter of each word. For

example, instead of Quarterly Sales Values Table, use tblQuarterlySalesValues.

There is strong debate over whether fields in a table should have tags. Whether you use them is up to you.

However, if you do use them, use the tags from Table 9.

Table 9: Field tags (if you decide to use them)

Tag

lng

bin

byte

cur

date

dbl

guid

int

lng

mem

ole

 www.accessdemo.info

Page 22 of 34

Object Type

Autoincrementing (either sequential or
random) Long (used with the suffix Cnt)

Binary

Byte

Currency

Date/time

Double

Globally unique identified (GUID) used for replication AutoIncrement fields

Integer

Long

Memo

OLE

 www.accessdemo.info

Page 23 of 34

sng

str

bool

Single

Text

Yes/No

Visual Basic 6.0 Objects

Table 10 shows the tags for Visual Basic 6.0 objects.

Table 10: Visual Basic 6.0 object tags

Tag

app

chk

clp

cbo

cmd

ctl

dat

dir

drv

fil

frm

fra

glb

hsb

img

lbl

lics

lin

lst

mdi

mnu

ole

 www.accessdemo.info

Page 24 of 34

Object Type

App

CheckBox

Clipboard

ComboBox

CommandButton

Control

Data

DirListBox

DriveListBox

FileListBox

Form

Frame

Global

HScrollBar

Image

Label

Licenses

Line

ListBox

MDIForm

Menu

OLE

 www.accessdemo.info

Page 25 of 34

opt

pic

prt

prp

scr

shp

txt

tmr

uctl

udoc

vsb

OptionButton

PictureBox

Printer

PropertyPage

Screen

Shape

TextBox

Timer

UserControl

UserDocument

VscrollBar

Microsoft ActiveX Data Objects 2.1 Tags

Office 2000 provides version 2.1 of the ActiveX Data Objects library. Table 11 lists the recommended tags

for this version of ADO.

Note: Many of the ADO, ADOX, and JRO tags overlap with existing DAO tags. Make sure you include the
object library name in all references in your code, so there’s never any possibility of confusion. For
example, use

Dim rst As ADODB.Recordset

or

Dim cat As ADOX.Catalog

rather than using the object types without the library name. This will not only make your code more explicit

and avoid confusion about the source of the object, but will also make your code run a bit faster.

Table 11: ADO 2.1 Object tags

Tag

cmn {cmd}

cnn {cnx}

err

errs

fld

flds

prm

prms

 www.accessdemo.info

Page 26 of 34

Object Type

Command

Connection

Error

Errors

Field

Fields

Parameter

Parameters

 www.accessdemo.info

Page 27 of 34

prps

prp

rst

Properties

Property

Recordset

Microsoft ADO Ext. 2.1 for DDL and Security (ADOX) Tags

In order to support DDL and security objects within Jet database, Microsoft provides ADOX, an additional

ADO library of objects. Table 12 lists tags for the ADOX objects.

Table 12: ADOX Object tags

Tag

cat

Object Type

Catalog

clms Column

clm

Columns

cmd Command

grp

Group

grps Groups

idx

Index

idxs Indexes

key

Key

keys Keys

prc

Procedure

prcs Procedures

prps Properties

prp

tbl

tbls

usr

usrs

vw

vws

Property

Table

Tables

User

Users

View

Views

 www.accessdemo.info

Page 28 of 34

Microsoft Jet and Replication Objects 2.1

In order to support Jet’s replication features, ADO provides another library (JRO). Table 13 lists suggested

tags for the JRO objects.

Table 13: JRO object tags

Tag

flt

flts

jet

rpl

Object Type

Filter

Filters

JetEngine

Replica

Microsoft SQL Server and Microsoft Data Engine (MSDE) Objects

Table 14 lists RVBA tags for Microsoft SQL Server and the Microsoft Data Engine (a limited-connection

version of SQL Server 7) objects.

Table 14: SQL Server/MSDE object tags

Tag

tbl

Object Type

table

proc stored procedure

trg

qry

trigger

view

dgm database diagram

pk

fk

idx

rul

def

primary key

foreign key

other (non-key) index

check constraint

default

Microsoft Common Control Objects

Windows 95 and Windows NT have a set of common controls that are accessible from VBA. Table 15 lists

the tags for objects created using these controls.

Table 15: Microsoft Common Control Object tags.

 Tag

 www.accessdemo.info

Page 29 of 34

ani

Object Type

Animation

 www.accessdemo.info

Page 30 of 34

btn

bmn

Button (Toolbar)

ButtonMenu (Toolbar)

bmns ButtonMenus (Toolbar)

bnd

bnds

bnp

btns

cbr

cbp

hdr

hdrs

cbi

cbis

ctls

dto

dtf

dtp

fsb

imc

iml

lim

lims

lit

lits

lsi

lsis

lvw

mvw

nod

nods

 www.accessdemo.info

Page 31 of 34

Band (CoolBar)

Bands (CoolBar)

BandsPage (CoolBar)

Buttons (Toolbar)

CoolBar

CoolBarPage (CoolBar)

ColumnHeader (ListView)

ColumnHeaders (ListView)

ComboItem (ImageCombo)

ComboItems (ImageCombo)

Controls

DataObject

DataObjectFiles

DTPicker

FlatScrollBar

ImageCombo

ImageList

ListImage

ListImages

ListItem (ListView)

ListItems (ListView)

ListSubItem (ListView)

ListSubItems (ListView)

ListView

MonthView

Node (TreeView)

Nodes (TreeView)

 www.accessdemo.info

Page 32 of 34

pnl

pnls

prb

sld

sbr

tab

tabs

tbs

tbr

tvw

udn

Panel (Status Bar)

Panels (Status Bar)

ProgressBar

Slider

StatusBar

Tab (Tab Strip)

Tabs (Tab Strip)

TabStrip

Toolbar

TreeView

UpDown

Other Custom Controls and Objects

Finally, Table 16 lists the tags for other commonly used custom controls and objects.

Table 16: Tags for commonly-used custom controls

Tag

cdl

dbc

dbg

dls

gau

gph

grd

msg

ses

msk

key

mmc

com

out

 www.accessdemo.info

Page 33 of 34

Object Type

CommonDialog (Common Dialog)

DBCombo (Data Bound Combo Box)

DBGrid (Data Bound Grid)

DBList (Data Bound List Box)

Gauge (Gauge)

Graph (Graph)

Grid (Grid)

MAPIMessages (Messaging API Message Control)

MAPISession (Messaging API Session Control)

MaskEdBox (Masked Edit Textbox)

MhState (Key State)

MMControl (Multimedia Control)

MSComm (Communication Port)

Outline (Outline Control)

 www.accessdemo.info

Page 34 of 34

Summary

pcl

rtf

spn

PictureClip (Picture Clip Control)

RichTextBox (Rich Textbox)

SpinButton (Spin Button)

Using a naming convention requires a considerable initial effort on your part. The payoff comes when

either you or another programmer has to revisit your code later. Using the conventions given here will

make your code more readable and maintainable.

Greg Reddick is the President of Xoc Software, a software development company developing programs in

Visual Basic, Microsoft Access, C/C++, and for the web. He leads training seminars in Visual Basic for

Application Developers Training Company (AppDev). In a previous life, he worked for four years on the

Access development team at Microsoft. Greg can be reached at mailto:grr@xoc.net or from the Xoc

Software web site, http://www.xoc.net.

